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Abstract 

This preliminary report describes on-going effort to develop an information extraction method to extract 
entities and relations from nearly 450 biographies in the Singapore Infopedia to populate 
SingPioneers.sg—a knowledge graph of personalities significant in the history and development of 
modern Singapore. Two approaches are explored: a natural language processing approach (using the 
SpaCy Python package) and an LLM approach (using GPT-4o). We had initially planned to explore a 
third approach—developing a Transformer/BERT model to perform the task—but abandoned the idea 

when we found that using GPT-4o is much easier and likely to be more effective. Thus, this paper focuses 
on lessons learnt in “prompt engineering” to instruct GPT-4o to extract the desired entities and relations 
from the biography texts. We compare this with the NLP approach of constructing linear token patterns 
and graphical syntactic patterns (or dependency tree patterns) for entity-relation extraction using SpaCy. 
 

Introduction 

This paper reports on our effort to populate SingPioneers.sg—a knowledge graph of personalities 
significant in the history and development of modern Singapore, based on nearly 450 biographies in the 
Singapore Infopedia, an electronic encyclopedia of the Singapore National Library Board. A prototype 
knowledge graph application and visualization interface have been implemented at 

https://SingPioneers.sg using a Neo4j graph database management system as backend database, a Node.js 
Web API as middleware, and Cytoscape.js JavaScript library to implement a graph visualization Web 
interface. The prototype knowledge graph was handcrafted from a manual analysis of the biographies of 
20 selected SingPioneers. 

In the second phase of the project, we are developing an information extraction method to extract 
entity-relation information from the biographies to complete the knowledge graph. This paper reports on 
our ongoing work and lessons learnt in exploring two approaches to information extraction—using a 

natural language processing approach (using the SpaCy Python package) and an LLM approach (using 
GPT-4o). We had initially planned to explore a third approach—developing a Transformer/BERT model 
to perform the task—but abandoned the idea when we found that using GPT-4o is much easier and likely 
to be more effective. Thus, this paper focuses on lessons learnt in “prompt engineering” to instruct GPT-
4o to extract the desired entities and relations from the biography texts. We compare this with the NLP 
approach of constructing linguistic patterns and dependency tree patterns for entity-relation extraction 
using SpaCy. 
 

SingPioneers.sg Knowledge Graph 

A graph is a network comprising nodes (or vertices) and links between nodes, called edges (or arcs). The 

links are often “directed”, in which case they are represented by arrows. In a knowledge graph, the nodes 
are assigned “meaning”: they represent persons, entities and concepts. In the SingPioneers knowledge 
graph, the entities represent persons, organizations, schools, hobbies, achievements, awards, creative 
works (e.g., songs, movies, etc.), economic sectors, and more. The links represent specific relations 
between the persons/entities/concepts. The types of relations in the knowledge graph include kinship and 
other types of interpersonal relations (e.g., teacher of, teammate of, friend of, coached by, mentor of). 
Other relation types include alumni of (a school), has business in (a particular commodity), composer of 

(a song), and well known for (some accomplishment). These conceptual relations between 

https://singpioneers.sg/


2 
 

entities/concepts are an important feature of knowledge graphs that make it different from other 
information representations.  

Nodes can store attributes relating to the entity or concept represented (sometimes referred to as 
metadata), as well as text, hyperlinks and hyperlinks to images and files. Similarly, links can store 

attributes and information regarding the relation that it represents (e.g., the date range when the relation 
holds). In the SingPioneers visualisation interface, the attributes stored in the nodes and links are 
displayed in a pop-up info box. 

The SingPioneers knowledge graph is basically a social network of persons (SingPioneers and 
significant persons in their lives), enhanced with additional information provided in the biographies. A 
biography in the Singapore Infopedia typically lists immediate family members, including wives, 
husbands, children, parents but also more distant relationships (e.g., ancestor, uncle, grandchild) to well-
known persons. A biography will also list the interpersonal relations: school-related relations (classmates, 

teachers, students, talent-scouts), professional relations (employer, colleague, contemporary, team-mate in 
a sports team), and associates (fellow members of an association). Figure 1 is a screenshot of the 
SingPioneers interpersonal network (based on 20 SingPioneers). A graph focused on pioneer artist Chen 
Wen Hsi is illustrated in Figure 2.  
 
 

 

Figure 1. Interpersonal network for 20 SingPioneers 

 



3 
 

 

Figure 2. A graph focused on pioneer artist Chen Wen Hsi 

 
 
Two Information Extractions Approaches: Linguistic Pattern Construction for SpaCy Versus 

Prompt Engineering for GPT-4o 

We now describe the two information extraction approaches that we explored to complete the 
SingPioneers knowledge graph with entity-relations from nearly 450 biography texts. 
 

Linguistic patterns for SpaCy 

SpaCy is a powerful NLP package that offers two approaches to information extraction:  

1. Using linear token patterns to identify the textual context (within a sentence) where an embedded text 

span (or text chunk) is expected to represent the desired entity or relation of interest; 

2. Using graphical syntactic patterns to identify where in the syntactic parse tree of a sentence 
(represented as a dependency tree) the desired entity or relation is expected to be represented as a 

node or a subtree of the dependency tree. 

In the former case (linear token patterns), the identified text span is extracted. Alternatively, the subtree of 
a text token can be extracted. In the latter case (graphical syntactic pattern), the text token occupying a 
node in the dependency tree is extracted. Alternatively, the text span representing the subtree of the token 
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can be extracted. In other words, the linear token representation and the dependency tree representation 
are linked, which allows for a combination of the two approaches to be used.  

Consider the following two example sentences: 

Sentence 1: Chen Wen Hsi (b. 9 September 1906, Guangdong, China–d. 17 December 1991, 

Singapore) was one of Singapore’s pioneer artists. 

Sentence 2: Haji Ambo Sooloh (b. 1891–d. 1963) was a prominent Malay businessman of Bugis 

descent. 

A simple token pattern for extracting the date of birth is: 

Pattern1: [{'LOWER': 'b.'}, {'ENT_TYPE': 'DATE', 'OP': '{1,4}' }, {'IS_PUNCT': True}] 

This pattern (in JSON format) lists three tokens, each token encapsulated in curly brackets {}. The first 
token indicates a text token converted to lowercase “b.”. The second token indicates the entity type of 
DATE, which can be repeated up to three times—that is, there can be one to four tokens tagged with the 
entity type DATE. The third token in the pattern indicates any punctuation mark. Thus, for each token, 
one can specify a combination of criteria (text string, lemma or root word, entity type, part-of-speech, and 
other linguistic features such as punctuation mark) to match. 

When a match is found in the text for this pattern, additional code associated with the pattern 

specifies what text token or text span to extract. For this pattern, the text span tagged with the entity type 
DATE is extracted: 

birthDate|9 September 1906 

birthDate|1891 

We have found the linear token patterns to be useful only for simple facts expressed in standard ways, 

without much variation in the text expression or overall sentence construction. Although it is possible to 
specify wildcard tokens in the token pattern, too many wildcard tokens make it difficult to precisely 
identify the desired text span to extract. In general, graphical syntactic patterns (i.e., dependency tree 
patterns) can identify the desired text span more precisely. 

Consider the following sentence: 

Sentence 3: Chen graduated from the Xinhua Academy of Fine Arts in 1929. 

The syntactic dependency tree generated by SpaCy can be represented diagrammatically in this way: 
 

Diagram 1: 
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A possible graphical pattern for extracting the school Chen was a student_at is as follows: 

Pattern2: 
[ {'RIGHT_ID': 'graduate', 'RIGHT_ATTRS': {'LEMMA': 'graduate'}}, 
  {'LEFT_ID': 'graduate', 'REL_OP': '>', 'RIGHT_ID': 'prep', 'RIGHT_ATTRS': {'DEP': 'prep'}}, 
  {'LEFT_ID': 'prep', 'REL_OP': '>', 'RIGHT_ID': 'school', 'RIGHT_ATTRS': {'ENT_TYPE': 

'ORG'}} 

] 

1. The first token in the pattern indicates the lemma (or root word) “graduate”, which matches with 
the second token in Sentence 3.  

2. The second token in the pattern indicates the dependency relation: 
graduate –prep–>  <some token> 

This will match with “graduated –prep–> from” in Diagram 1.  
3. The third token indicates the dependency relation: 
  <some token> ––> entity type: ORG 

This will match with “from ––> Academy” in Diagram 1.  
 

After the “Academy” node in the dependency tree is identified, the code associated with this graphical 
pattern instructs the program to extract the subtree under the “Academy” node. Thus the text span “the 
Xinhua Academy of Fine Arts” is extracted. 

It is clear that token patterns and dependency tree patterns are difficult to construct, requiring careful 
examination of example token tagging and dependency trees output by SpaCy, and meticulous pattern 
construction to give high precision and recall. 
 

Prompt engineering for GPT-4o 

Entity and relation extraction using ChatGPT and GPT-4o starts with “prompt engineering” to construct 
clear instructions to perform the information extraction, followed by a small number of example 

input/output to address errors (referred to as few-shot learning). Additional fine-tuning is possible using a 
training set of example input/output to create an additional refinement layer above GPT-4o. 

Our prompts begin by specifying the overall purpose or task, followed by more specific task 
specifications that indicate subtypes of the task or example keywords. Then, the output format is 
specified. Our prompt to extract the birthdate and birthplace from Sentence 1 and 2 is as follows: 

Your task is to carry out information extraction from the text given in triple quotes. 
Specifically, extract a person and his/her birthdate or birthyear, and birthplace if available. 

Output the result in the format: birth|person|birthdate|optional birthplace 

This prompt is obviously easier to construct than linguistic patterns as it is in natural language and is 
closer to task instructions we might give to another human. Also, related pieces of information are 
specified together for extraction, including the person’s name and optionally the birthplace. 

The following two prompts illustrate how relation subtypes can be specified. The second example 
requests for any date, year or year range associated with the relation. 

Your task is to carry out entity and relation extraction from the text given in triple quotes. 
Specifically, extract kinship relations between persons. 

Kinship relations include: ancestor, brother, brother_in_law, daughter, father, father_in_law, 
granddaughter, grandfather, grandson, husband, maternal uncle, mother, nephew, paternal 
grandfather, paternal granduncle, sister, son, son_in_law, stepbrother, uncle, wife, child, 
grandchild, sibling, aunt, nephew, niece, granduncle, grandaunt 

Output the result in the format: has_relation|person1|person2 
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Your task is to carry out information extraction from the text given in triple quotes. 
Specifically, extract a person and his/her achievements and recognitions gained. 
Types of achievement include contribution, well_known_for, expertise, specialty, developer_of, 
inventor_of, donor_of, composer_of, creator_of, author_of. 

Types of recognition include award, named_after, appointment, honours. 
Also extract date, year or year range associated with the achievement or recognition, if available. 
Output the result in the format: type of achievement or recognition|person|achievement or 
recognition|optional date 

 
If there are extraction errors in the GPT output, then a few example input/output can be provided to 
enable few-shot learning: 
 

Your task is to carry out information extraction from the text given in triple quotes. 
Specifically, extract a person and his/her occupation or profession.  
Output the result in the format: Person-Occupation|person|occupation or profession 
 
Here are a few example input and output: 
 
Input:  """Sculptor Zhang Chenbo and ink painter Pan Tianshou were among his teachers.""" 

Output: Person-Occupation|Zhang Chenbo|sculptor 
Output: Person-Occupation|Pan Tianshou|ink painter 
 
Input:  """Chen also gave private art lessons, and among his students was Earl Lu, who became a 
prominent artist in his own right and an avid art collector.""" 
Output: Person-Occupation|Earl Lu|artist 
Output: Person-Occupation|Earl Lu|art collector 

 
As we have several types of relations to extract from the biography texts, we grouped the individual 

prompts into three multi-step prompts, so that we need only three passes to complete the entity-relation 
extraction task for SingPioneers.sg. An example of a multi-step prompt is provided in the Appendix. 
 

Advantages of Using GPT-4o for Information Extraction 

Our exploration of ChatGPT and GPT-4o for entity-relation extraction suggests that using LLM is the 
recommended approach to take in entity-relation extraction. In addition to ease of use and high accuracy 
of extraction, we found GPT-4o to have the following capabilities that are difficult to emulate using token 
pattern and graphical pattern matching: 

 
1. Reference resolution across sentences: it can identify the full name of a person referred to by a 

pronoun or surname in a sentence. The full name may be given only at the beginning of the biography 
text. 

 
Sentence: A prolific painter who worked in a range of styles, Chen won acclaim for combining 
Western art with Chinese brush strokes in his paintings. 

Output: well_known_for|Chen Wen Hsi|combining Western art with Chinese brush strokes 
 

Sentence: In 1948, Chen embarked on a trip to exhibit his works in Hanoi, Vietnam, and 
Singapore.  He arrived in Singapore in 1949, and staged a one-man exhibition at the Chinese 
Chamber of Commerce with the help of the China Society of Singapore. 
Output: arrival_in_Singapore|Chen Wen Hsi|1949|Vietnam 
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GPT-4o can resolve quite complex reference expressions: 
 

Sentence:  Ambo Sooloh had two wives and 10 children. One of them, Haji Abdullah Amin, was a 
Malay literary pioneer. 

has_child|Haji Ambo Sooloh|Haji Abdullah Amin 
 

Sentence:  Haji Ambo is best remembered as one of the founders of the Malay newspaper Utusan 
Melayu, which he started together with Yusof Ishak (who later became the first president of 
Singapore) in 1939. 
Output: Person-Occupation|Yusof Ishak|founder of Utusan Melayu 

 
GPT-4o is able of infer the person’s name not explicitly given in a table: 

 
Table row: 1980: Gold medal, National Museum of History, Taipei, Taiwan. 
Output: awarded|Chen Wen Hsi|Gold medal, National Museum of History, Taipei, Taiwan|1980 

 
Table row: Wife: Huang Jingzhuang (Ng Kang Chan). 
Table row: Children: Sons Shaorui, Shaoming and Shaofen. 
Output: has_wife|Chen Wen Hsi|Huang Jingzhuang 

Output: has_child|Chen Wen Hsi|Shaorui 
Output: has_child|Chen Wen Hsi|Shaoming 
Output: has_child|Chen Wen Hsi|Shaofen 

 
 
2. Identify the scope of conjunctions: it can accurately extract individual entities linked by conjunctions 

and output them as separate relations. This is tedious to specify using token patterns and graphical 

patterns. 
 

Sentence: In Singapore, Chen was employed as an art teacher at The Chinese High School from 
1949 to 1968, and at NAFA from 1950 to 1959. 
Output: teacher_at|Chen Wen Hsi|The Chinese High School|1949-1968 
Output: teacher_at|Chen Wen Hsi|Nanyang Academy of Fine Arts|1950-1959 

 
Sentence: Sculptor Zhang Chenbo and ink painter Pan Tianshou were among his teachers. 

Output: has_teacher|Chen Wen Hsi|Zhang Chenbo 
Output: has_teacher|Chen Wen Hsi|Pan Tianshou 

 
Sentence: He opened the Old and New Gallery at Tanglin Shopping Centre in 1972, and the Chen 
Wen-Hsi Gallery at the Singapore Handicraft Centre in 1976. 
founder_of|Chen Wen Hsi|Old and New Gallery at Tanglin Shopping Centre|1972   
founder_of|Chen Wen Hsi|Chen Wen-Hsi Gallery at the Singapore Handicraft Centre|1976   

 
 
3. Date extraction: for an entity-relation extracted, GPT-4o can identify the associated date, year or year 

range. Dates are, of course, easy to identify using NLP, but they are tedious to include in linguistic 
patterns as they can occur at many syntactic locations in a sentence. It is also difficult to determine 
which relation the date applies to, if there are multiple relations in a sentence. The following 
examples illustrate reference resolution and date extraction across three sentences: 

 
Sentence: Subsequently, a group of teachers left the academy and set up a private art college 
known as Xinhua Academy of Fine Arts. Chen transferred to this school  and became 
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classmates with Liu Kang, Chan Jen Hao and Chen Chong Swee, all of whom would later 
become Singapore’s pioneer artists. Chen graduated from the academy in 1929. 
Output: student_at|Chen Wen Hsi|Xinhua Academy of Fine Arts|1929 

 

Some Issues Encountered  

In this section, we describe two issues that we encountered in the entity-relation extraction.  
In the case when a relation involves two entities of the same type (e.g., kinship relation between two 

persons), GPT-4o was not consistent in representing the direction of the relation. For example, 

 son|Person1|Person2 

can indicate “Person1 has son Person2” or “Person1 is the son of Person2”. To help GPT-4o handle this 
issue, we provided a few example input and output. This seemed to reduce the errors but GPT-4o was still 
occasionally confused. We amended the output format from “son|Person1|Person2” to 

“has_son|Person1|Person2”. Specifying a relation with a clear direction appears to have solved the 
problem. 

A second issue is that when several instances of a relation type occur in a text, GPT-4o may not 
output all the relation instances. Adding the instruction “Provide comprehensive results.” to the end of the 
prompt did not make GPT-4o output more comprehensive results. However, a subsequent prompt of 
“more” or “try harder” may elicit more extractions. Thus, whenever we expect several instances of a 
relation to be extracted, we would submit a subsequent “more” after the initial output. 

A formal evaluation of entity-relation extraction from the biographies using GPT-4o is in progress, 
and further improvements to the prompts will be made. GPT-4o supports fine-tuning of the model based 
on a training set. The examples above suggest that a fine-tuning layer may not be necessary: entity-
relation extraction by GPT-4o from biography texts is surprisingly good. 
 

Further Work to Extract Cause-Effect Information from Social Science Research Articles 

The biography texts in Singapore Infopedia use mainly everyday language and concepts, and is meant to 
be readily understood by the general public. The entity and relation types that are the target of the 
information extraction effort are also everyday concepts and relations. We wondered whether GPT-4o can 
handle more specialized or abstract relation types. So, we carried out preliminary exploration for our next 

entity-relation extraction project—to tag and extract cause-effect information from social science research 
papers. 

We constructed a simple prompt to ask GPT-4o to “identify cause-effect relations found in the text 
given in triple quotes, and to tag text spans with the following cause-effect roles: cause_concept, 
effect_concept, modality (e.g. probably, possibly, negation), polarity (e.g., positive, negative), effect_size 
(e.g., strong, weak), moderator, mediator, qualifier, effect_type.” Here is an example output:   

 

This study examines the underlying dimensions of co-creation of an experience in the context of 
tourism and its effects on <effect_concept>behavioral consequences such as tourists' satisfaction 
with the co-creation of an experience, subjective well-being, and loyalty to the service 
provider</effect_concept>. 
The purpose of the study is achieved by showing that <cause_concept>tourists' co-creation of an 
experience</cause_concept> <polarity>positively</polarity> affects the 
<effect_concept>vacation experience</effect_concept> and <effect_concept>loyalty to the 

service provider</effect_concept>. 
<effect_concept>Satisfaction with the vacation experience</effect_concept> 
<polarity>positively</polarity> influences <effect_concept>overall life 
satisfaction</effect_concept>. 
The results of this study should help <moderator>service providers</moderator> 
<effect_type>change strategies</effect_type> and implement a platform for creating unique 
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<qualifier>co-creation of experiences</qualifier>, allowing tourists to become more 
<effect_size>physically and emotionally engaged</effect_size> in the <cause_concept>planning 
of their vacations</cause_concept>. 

 

The cause-effect tagging by GPT-4o is better than we expected, but improvements in the prompt and 
example output are needed. Fine-tuning with a training corpus may also be needed. This task is clearly 
more difficult than entity-relation extraction from biography text. 
 
 

APPENDIX. Example multi-step prompt for extracting multiple sets of relations 

 
Your task is to carry out entity and relation extraction from the text given in triple quotes. 

The task is divided into the following steps. 
 
Step 1 - Extract the relation between a person and a school. 
Relations of interest include: alumni_of, principal_of, sport_master_of, teacher_at, primary_schooling_at, 
secondary_schooling_at, tertiary_education_at, student_at. 
Also extract date, year or year range associated with the relation, if available. 
Output the result in the format: type of relation|person|school|optional date 

 
Step 2 - Extract the relation between a person and an organization or group of people. 
Relations of interest include: chairman_of, co_founder_of, director_of, founder_of, 
honorary_secretary_of, leader_of, member_of, president_of, singer_with, violinist_with, worked_for, 
vice_president_of, editor_of, co_editor_of, owner_of, manager_of, treasurer_of, secretary_of, adviser_to, 
captain_of, partner_at, board_member_of, committee_member_of, founder_member_of, 
sportsperson_with, conductor_of, coach_of, played_for. 

Also extract date, year or year range associated with the relation, if available. 
Exclude the relations extracted in earlier steps. 
Output the result in the format: type of relation|person|organization|optional date 
 
Step 3 - Extract a person and his/her achievements and recognitions gained. 
Types of achievement include contribution, well_known_for, expertise, specialty, developer_of, 
inventor_of, donor_of, author_of, composer_of, creator_of, won. 
Types of recognition include award, named_after, appointment, honours. 

Also extract date, year or year range associated with the achievement or recognition, if available. 
Exclude the relations extracted in earlier steps. 
Output the result in the format: type of achievement or recognition|person|achievement or 
recognition|optional date 
 
 

  


